全等三角形的判定,全等三角形的判定方法有哪五种?
1、全等三角形的判定方法有哪五种?
全等三角形的判定方法:“边边边”、“边角边”、“角边角”、“角角边”、“直角、斜边、边”。
1、SSS(边边边),当三角形的三边对应相等时那么这两个三角形是全等三角形。
2、SAS(边角边),两边及其夹角对应相等的三角形是全等三角形。
3、ASA(角边角),两角及其夹边对应相等的三角形全等。
4、AAS(角角边),两角及其一角的对边对应相等的三角形全等。
5、RHS(直角、斜边、边),在一对直角三角形中,斜边及另一条直角边相等。
全等三角形性质:
1、全等三角形的对应角相等。
2、全等三角形的对应边相等。
3、能够完全重合的顶点叫对应顶点。
4、全等三角形的对应边上的高对应相等。
5、全等三角形的对应角的角平分线相等。
6、全等三角形的对应边上的中线相等。
7、全等三角形面积和周长相等。
8、全等三角形的对应角的三角函数值相等。
2、三角形全等又哪几种判定方法
三角形全等有五种判别方法:
1、SSS,即边边边。三边对应相等的三角形是全等三角形。
2、SAS,即边角边。两边及其夹角对应相等的三角形是全等三角形。
3、ASA,即角边角。两角及其夹边对应相等的三角形全等。
4、AAS,即角角边。两角及其一角的对边对应相等的三角形全等。
5、RHS,即直角、斜边、边,又称HL定理(斜边、直角边)。在一对直角三角形中,斜边及另一条直角边相等。
:
全等三角形的运用
1、性质中三角形全等是条件,结论是对应角、对应边相等。在写两个三角形全等时,一定把对应的顶点,角、边的顺序写一致,为找对应边,角提供方便。
2、当图中出现两个以上等边三角形时,应首先考虑用SAS找全等三角形。
3、用在实际中,一般我们用全等三角形测相等的距离。以及相等的角,可以用于工业和军事。
4、三角形具有一定的稳定性,所以我们用这个原理来做脚手架及其他支撑物体。
来源:百度百科-全等三角形
3、全等三角形判定条件(六种)是什么?
全等三角形判定条件(六种)是:
1、定义法:两个完全重合的三角形全等。
2、SSS:三个对应边相等的三角形全等。
3、SAS:两边及其夹角对应相等的三角形全等。
4、ASA:两角及其夹边对应相等的三角形全等。
5、AAS:两角及其中一角的对边对应相等的三角形全等。
6、HL:斜边和一条直角边对应相等的两个直角三角形全等。经过翻转、平移、旋转后,能够完全重合的两个三角形叫做全等三角形,而该两个三角形的三条边及三个角都对应相等。全等三角形指两个全等的三角形,它们的三条边及三个角都对应相等。
全等三角形是几何中全等之一。根据全等转换,两个全等三角形经过平移、旋转、翻折后,仍旧全等。正常来说,验证两个全等三角形一般用边边边(SSS)、边角边(SAS)、角边角(ASA)、角角边(AAS)、和直角三角形的斜边,直角边(HL)来判定。
全等三角形的性质:
1、全等三角形的对应角相等。
2、全等三角形的对应边相等。
3、能够完全重合的顶点叫对应顶点。
4、全等三角形的对应边上的高对应相等。
注意事项
1、SSS、SAS、ASA、AAS可用于任意三角形;HL只限于直角三角形。
2、注意SSA、AAA不能判定全等三角形。
3、在证明时注意利用定理,如:等式性质、等量代换、等角重合有等角、公共边、公共角、对顶角相等、等角或同角的余角或补角相等、角平分线定义、线段中点定义等。
4、证明全等写条件时注意书写顺序。
5、写全等结论时注意对应顶点的位置。
6、有时全等三角形会结合等腰三角形出现命题。
4、三角形全等的判定方法是什么?
1、边边边(SSS):
有三边对应相等的两个三角形全等。它用于证明两个三角形全等。该定理最早由欧几里得证明。
2、边角边(SAS):
各三角形的其中两条边的长度都对应相等,且这两条边的夹角(即这两条边组成的角)都对应相等的话,该两个三角形就是全等三角形。
3、角边角(ASA):
两角和它们的夹边对应相等的两个三角形全等,简写成“角边角”或“ASA”。角边角是三角形全等的判定方法之一,需要注意的是角边角中的边必须是两个角公共的一条边(一个角是由两条边组成的,三角形中的任意两个角都有一条公共边)。
4、角角边(AAS):
角边角是指两个角和这两个角的公共边,角边角定理可以推出全等。角角边是指两个角和另外一个非公共边,角角边也可以推出全等。
5、直角边(HL):
HL定理是证明两个直角三角形全等的定理,通过证明两个直角三角形直角边和斜边对应相等来证明两个三角形全等。
全等三角形的性质
1、全等三角形的对应角相等。
2、全等三角形的对应边相等。
3、能够完全重合的顶点叫对应顶点。
4、全等三角形的对应边上的高对应相等。
请添加微信号咨询:19071507959