留学指南网

您好,欢迎访问留学指南网,我们将竭诚为您服务!

偏导数,什么叫做偏导数,偏导数的性质是什么?

2024-04-08 11:46分类: 教育知识 阅读:

1、什么叫做偏导数,偏导数的性质是什么?

x(x0,y0)与f'y(x0,y0)都存在时,我们称f(x,y)在(x0,y0)处可导。如果函数f(x,y)在域D的每一点均可导,那么称函数f(x,y)在域D可导。

此时,对应于域D的每一点(x,y),必有一个对x(对y)的偏导数,因而在域D确定了一个新的二元函数,称为f(x,y)对x(对y)的偏导函数,简称偏导数。

性质

1、如果一个函数f(x)在某个区间I上有f''(x)(即二阶导数)>0恒成立,那么对于区间I上的任意x,y,总有:f(x)+f(y)≥2f[(x+y)/2],如果总有f''(x)<0成立,那么上式的不等号反向。

2、判断函数极大值以及极小值。

结合一阶、二阶导数可以求函数的极值。当一阶导数等于0,而二阶导数大于0时,为极小值点。当一阶导数等于0,而二阶导数小于0时,为极大值点;当一阶导数和二阶导数都等于0时,为驻点。

", 'contentText': "当函数z=f(x,y)在(x0,y0)的两个偏导数f'x(x0,y0)与f'y(x0,y0)都存在时,我们称f(x,y)在(x0,y0)处可导。如果函数f(x,y)在域D的每一点均可导,那么称函数f(x,y)在域D可导。 此时,对应于域D的每一点(x,y),必有一个对x(对y)的偏导数,因而在域D确定了一个新的二元函数,称为f(x,y)对x(对y)的偏导函数,简称偏导数。 性质 1、如果一个函数f(x)在某个区间I上有f''(x)(即二阶导数)>0恒成立,那么对于区间I上的任意x,y,总有:f(x)+f(y)≥2f[(x+y)/2],如果总有f''(x)<0成立,那么上式的不等号反向", 'goodValueNum': 0, 'badValueNum': 0, 'collectNum': 0, 'publishTime': '2022-10-02

偏导数,什么叫做偏导数,偏导数的性质是什么?

2、偏导数是什么?

f\'x(x,y)=2xy/(x^2+y^2)-2x^3y/(x^2+y^2)^2,f\'y(x,y)=x^2/(x^2+y^2)-2x^2y^2/(x^2+y^2)^2

注意f(x,0)=f(0,y)=0,对不等于0的x,y成立。按定义可求得f在(0,0)的两个偏导数都等于0。对(x,y)异于原点的点。

在一元函数中,导数就是函数的变化率。对于二元函数的“变化率”,由于自变量多了一个,情况就要复杂的多。

在 xOy 平面内,当动点由 P(x0,y0) 沿不同方向变化时,函数 f(x,y) 的变化快慢一般来说是不同的,因此就需要研究 f(x,y) 在 (x0,y0) 点处沿不同方向的变化率。

偏导数的表示符号为:∂。偏导数反映的是函数沿坐标轴正方向的变化率。

x方向的偏导

设有二元函数 z=f(x,y) ,点(x0,y0)是其定义域D 内一点。把 y 固定在 y0而让 x 在 x0 有增量 △x ,相应地函数 z=f(x,y) 有增量(称为对 x 的偏增量)△z=f(x0+△x,y0)-f(x0,y0)。

如果 △z 与 △x 之比当 △x→0 时的极限存在,那么此极限值称为函数 z=f(x,y) 在 (x0,y0)处对 x 的偏导数,记作 f\'x(x0,y0)或函数 z=f(x,y) 在(x0,y0)处对 x 的偏导数。

实际上就是把 y 固定在 y0看成常数后,一元函数z=f(x,y0)在 x0处的导数。

y方向的偏导

同样,把 x 固定在 x0,让 y 有增量 △y ,如果极限存在那么此极限称为函数 z=(x,y) 在 (x0,y0)处对 y 的偏导数。记作f\'y(x0,y0)。

偏导数,什么叫做偏导数,偏导数的性质是什么?

3、偏导数是什么

问题一:导数和偏导数的区别? 倒数是二位平面中某一点的斜率(切线),而偏导数是三维立体图形中某个曲面的切面。

问题二:偏导数是什么意思 导数表示函数的自变量的变化趋于零时因变量的变化 在函数图形中某点的导数表示该点的切线的斜率 都是一个意思

问题四:偏导数是什么?具体怎么算? 对多变量函数Z=f(x,y,z,...)对其中一个变量进行求导。譬如,dZ/dx ,就是Z对x的偏导数。

求偏导数时,把要求的量当做未知,其余量都看作常量。

问题五:lny的偏导数是什么? 偏导数需要有两个变量,对其中 一个变量进行求导,你这里只有一个变量,

问题六:这到底是什么意思!导数 20分 导数在微积分中也算是简单了,基本原理还是很容易理解的,只要学过直线方程就行

初学者不用太过理解。学深一点就有严格定义,涉及许多极限运算,更强调理解能力

先学懂导数的运算,俯数也有许多公式的,有兴趣就再问我吧

问题七:偏导数是什么?它和导数有什么区别? 和导数差不多,只是偏倒数是求得二元方程的导数

问题八:偏导数符号怎么读它是什么字母 ?:偏微分符号,?读作round 法国人发明的。

偏导数英文翻译为partial derivative,因此有时读为partial。还有一种读法,念成round

?:是希腊字母δ的古典写法,数学里只用作表示偏导数的记号,在表示偏导数的时候,一般不念字母名称,中国人大多念作“偏”,(例如 z对x的偏导数,念作“偏z偏x”。)

(简单的把?y/?x读成偏y比偏x)

4、偏导数是什么意思?

几何意义

表示固定面上一点的切线斜率。

偏导数f\'x(x0,y0)表示固定面上一点对x轴的切线斜率;偏导数f\'y(x0,y0)表示固定面上一点对y轴的切线斜率。

高阶偏导数:如果二元函数z=f(x,y)的偏导数f\'x(x,y)与f\'y(x,y)仍然可导,那么这两个偏导函数的偏导数称为z=f(x,y)的二阶偏导数。二元函数的二阶偏导数有四个:f"xx,f"xy,f"yx,f"yy。

注意:

f"xy与f"yx的区别在于:前者是先对x求偏导,然后将所得的偏导函数再对y求偏导;后者是先对y求偏导再对x求偏导。当f"xy与f"yx都连续时,求导的结果与先后次序无关。

在数学中,一个多变量的函数的偏导数,就是它关于其中一个变量的导数而保持其他变量恒定(相对于全导数,在其中所有变量都允许变化)。偏导数在向量分析和微分几何中是很有用的。

微信号咨询

请添加微信号咨询:19071507959

在线报名

郑重声明:本文内容、数据、图表等来源于网络引用或其他公开资料,版权归属原作者、原发表出处。若版权所有方对本文的引用持有异议,请联系留学指南网,本方将及时处理。本文的引用仅供读者交流学习使用,不涉及商业目的。本文内容仅代表作者观点,网站不对内容的准确性、可靠性或完整性提供明示或暗示的保证。读者阅读本文后做出的决定或行为,是基于自主意愿和独立判断做出的,请读者明确相关结果。如需转载本方拥有版权的文章,请联系留学指南网www.liuxue678.com注明“转载原因”。未经允许私自转载将保留追究其法律责任的权利。

上一篇:偏光镜的作用,偏光镜片有什么作用啊?

下一篇:偏微分,什么叫偏微分?

相关推荐

关注我们

    留学指南网
返回顶部