互质是什么概念,互质是什么意思?
1、互质是什么意思?
两个正整数只有一个公约数1时,它们的关系叫做互质,如3和11互质。
定义:
互质,若N个整数的最大公因数是1,则称这N个整数互质。
例如8,10的最大公因数是2,不是1,因此不是整数互质。
7,11,13的最大公因数是1,因此这是整数互质。
5和5不互质,因为5和5的公因数有1、5。
1和任何数都成倍数关系,但和任何数都互质。因为1的因数只有1,而互质数的原则是:只要两数的公因数只有1时,就说两数是互质数。因为1只有一个因数所以1既不是质数(素数),也不是合数,无法再找到1和其他数的别的公因数了。1和-1与所有整数互素,而且它们是唯一与0互素的整数。
互质数的写法:如c与m互质,则写作(c,m)=1。
小学数学教材对互质数是这样定义的:“公约数只有1的两个数,叫做互质数。”
这里所说的“两个数”是指自然数。
“公约数只有 1”,不能误说成“没有公约数。”
这里有一个误区,认为0不与任何数互质。严格地按照互质的定义来看0与1,-1均互质,通过任意有理数的表示方式a/b(a,b互质且b为正整数),同样可以得出0与1,-1均必须互质,否则0不是有理数。
判断方法:
(1)两个不同的质数一定是互质数。
例如,2与7、13与19。
(2)一个质数,另一个不为它的倍数,这两个数为互质数。
例如,3与10、5与 26。
(3)1不是质数也不是合数,它和任何一个自然数(1本身除外)在一起都是互质数。如1和9908。
(4)相邻的两个自然数是互质数。如 15与 16。
(5)相邻的两个奇数是互质数。如 49与 51。
(6)较大数是质数的两个数是互质数。如97与88。
(7)两个数都是合数(二数差又较大),较小数所有的质因数,都不是较大数的约数,这两个数是互质数。
如357与715,357=3×7×17,而3、7和17都不是715的约数,这两个数为互质数。
(8)两个数都是合数(二数差较小),这两个数的差的所有质因数都不是较小数的约数,这两个数是互质数。如85和78。85-78=7,7不是78的约数,这两个数是互质数。
(9)两个数都是合数,较大数除以较小数的余数(不为“0”且大于“ 1”)的所有质因数,都不是较小数的约数,这两个数是互质数。如 462与 221
462÷221=2……20,
20=2×2×5。
2、5都不是221的约数,这两个数是互质数。
(10)减除法。如255与182。
255-182=73,观察知 73<82。
182-(73×2)=36,显然 36<73。
73-(36×2)=1,
(255,182)=1。
所以这两个数是互质数。 [2]
三个或三个以上自然数互质有两种不同的情况:一种是这些成互质数的自然数是两两互质的。如2、3、5。另一种不是两两互质的。如6、8、9。
2、什么叫互质
互质指的是两个正整数之间没有公因数,除了1以外,也就是它们的最大公约数为1。下面是具体的解释:
互质,在数学中也被称为“互素”、“互质数”或“互质关系”。其中,“互素”在欧洲被常用,而“互质数”在美国普及,中文中则一般称之为“互质”。判断两个正整数是否互质,最常用的方法就是求它们的最大公约数。
如若它们的最大公约数为1,那么这两个数就是互质数。另外,如果一个数是质数,那么它一定是和任何其他不等于它的数都互质的。互质除了是一个基本概念外,还有很多有用的性质。
例如,如果a,b互质,那么任意的a倍数与b倍数不可能相等,即若a×k=b×j,那么a|j,b|k,这是因为a不能整除b,所以j必然与k的值不同。另外,互质的数有一条重要的定理:若a,b互质,那么a和b一定可以写成下面这个形式,即a=x^m,b=y^n,其中x和y是质数。
互质数在数学中有着广泛的应用。比如在分解因数中,利用到它的性质,可以进行快速的质因数分解。另外,它们在数论、密码学、图论、类群等多个分支领域也有着重要作用。
总之,互质这个概念不仅在初高中的数学教学中常见,而且在数学研究中也有着重要的应用。掌握和运用它的性质对于提升数学水平和解决实际问题都具有很大的帮助。
扩展知识:
整数不包括小数、分数。如果不加特殊说明,所涉及的数都是整数,所采用的字母也表示整数。整数的全体构成整数集,整数集是一个数环。在整数系中,零和正整数统称为自然数。则正整数、零与负整数构成整数系。
3、互质是什么意思?
互质是什么意思呢?两个正整数只有一个公因数1时,它们的关系叫做互质,如3和11互质。
百科释义
互质,公约数只有1的两个整数,叫做互质整数·公约数只有1的两个自然数,叫做互质自然数,后者是前者的特殊情形。
最大的公因数是1的两个自然数,叫做互质数。这里所说的“两个数”是指除0外的所有自然数。
三个或三个以上自然数互质有两种不同的情况:一种是这些成互质数的自然数是两两互质的。如2、3、5。另一种不是两两互质的。如6、8、9。 两个正整数,除了1以外,没有其他公约数时,称这两个数为互质数.
互质数的概率是6/π^2。
4、互质是什么意思
互质是公约数只有1的两个整数,叫做互质整数。公约数只有1的两个自然数,叫做互质自然数,后者是前者的特殊情形。
例如8,10的最大公因数是2,不是1,因此不是整数互质。7,11,13的最大公因数是1,因此这是整数互质。5和5不互质,因为5和5的公因数有1、5。
判别方法
(1)两个不同的质数一定是互质数。
例如,2与7、13与19。
(2)一个质数,另一个不为它的倍数,这两个数为互质数。
例如,3与10、5与 26。
(3)1不是质数也不是合数,它和任何一个自然数(1本身除外)在一起都是互质数。如1和9908。
(4)相邻的两个自然数是互质数。如 15与 16。
(5)相邻的两个奇数是互质数。如 49与 51。
(6)较大数是质数的两个数是互质数。如97与88。
(7)两个数都是合数(二数差又较大),较小数所有的质因数,都不是较大数的约数,这两个数是互质数。
如357与715,357=3×7×17,而3、7和17都不是715的约数,这两个数为互质数。
(8)两个数都是合数(二数差较小),这两个数的差的所有质因数都不是较小数的约数,这两个数是互质数。如85和78。85-78=7,7不是78的约数,这两个数是互质数。
(9)两个数都是合数,较大数除以较小数的余数(不为“0”且大于“ 1”)的所有质因数,都不是较小数的约数,这两个数是互质数。如 462与 221
462÷221=2……20,
20=2×2×5。
2、5都不是221的约数,这两个数是互质数。
(10)减除法。如255与182。
255-182=73,观察知 73182。
182-(73×2)=36,显然 3673。
73-(36×2)=1,
(255,182)=1。
所以这两个数是互质数。
三个或三个以上自然数互质有两种不同的情况:一种是这些成互质数的自然数是两两互质的。如2、3、5。另一种不是两两互质的。如6、8、9。
请添加微信号咨询:19071507959